Math 261
 Fall 2023
 Lecture 29

Feb 19-8:47 AM

$$
\begin{aligned}
& \text { Use linear approximation } \\
& \text { to estimate } \tan 65^{\circ} \longrightarrow f(x) \approx f(a)+f^{\prime}(a)(x-a) \\
& \tan 65^{\circ} \approx \tan 60^{\circ}=\sqrt{3} \quad \text { near } x=a \text {. } \\
& f(x)=\tan x \quad f\left(60^{\circ}\right)=\tan 60^{\circ}=\sqrt{3} \\
& a=60^{\circ} \quad f^{\circ}\left(60^{\circ}\right)=\sec ^{2} 60^{\circ} \\
& f^{\prime}(x)=\operatorname{Sec}^{2} x \quad=\left[\sec 60^{\circ}\right]^{2}=2^{2}=4 \\
& \tan x \approx \sqrt{3}+4\left(x-60^{\circ}\right) \\
& \text { near } 60^{\circ} \\
& \tan 65^{\circ} \approx \sqrt{3}+4\left(65^{\circ}-60^{\circ}\right) \\
& \approx \sqrt{3}+4.5^{\circ} \\
& =\sqrt{3}+4 \cdot 5 \cdot \frac{\pi}{180}=\sqrt{3}+\frac{\pi}{9} \\
& \begin{array}{rlr}
\text { Now use Your Canc } & =2.081 \\
\text { to find } \tan 65^{\circ} & \approx 2.145 & \approx 2.1 \\
& \approx 2.1
\end{array}
\end{aligned}
$$

SG 11, \#6
At what points are tangent to the curve $y^{2}=2 x^{3}$ are perpendicular to $4 x-3 y+1=0$?

Oct 18-10:34 AM

Given $x \sin y-y \cos x=x^{2}+y^{2}$
find $\frac{d y}{d x}$
$\frac{d}{d x}[x \sin y]-\frac{d}{d x}[y \cos x]=\frac{d}{d x}\left[x^{2}\right]+\frac{d}{d x}\left[y^{2}\right]$
$1 \cdot \sin y+x \cdot \cos y \cdot \frac{d y}{d x}-\left[\frac{d y}{d x} \cdot \cos x+y=\sin \right] f 2 x+2 y \cdot \frac{d y}{d x}$
$\sin y+x \cos y \frac{d y}{d x}-\cos x \frac{d y}{d x}+y \sin x=2 x+2 y \frac{d y}{d x}$
$[x \cos y-\cos x-2 y] \frac{d y}{d x}=2 x-\sin y-y \sin x$

$$
\frac{d y}{d x}=\frac{2 x-\sin y-y \sin x}{x \cos y-\cos x-2 y}
$$

Suppose $x=f(t), \quad y=g(t)$

$$
x^{2}+y^{2}=100
$$

Take derivative with respect to t.

$$
\begin{aligned}
& \frac{d}{d t}\left[x^{2}\right]+\frac{d}{d t}\left[y^{2}\right]=\frac{d}{d t}[100] \\
& 2 x \frac{d x}{d t}+2 y \frac{d y}{d t}=0
\end{aligned}
$$

If $x^{J}=6, y^{2}=8$, and $\frac{d x}{d t}=-3$, find $\frac{d y}{d t}$

$$
\begin{aligned}
& 2 \cdot 6 \cdot(-3)+2 \cdot 8 \cdot \frac{d y}{d t}=0 \\
& -36+16 \frac{d y}{d t}=0 \rightarrow \frac{d y}{d t}=\frac{36}{16}=\frac{9}{4}
\end{aligned}
$$

Suppose $x=x(t), y=y(t)$, and $z=z(t)$
we have $x^{2}+y^{2}=z^{2} \quad 3^{2}+4^{2}=z^{2} \rightarrow z^{2}=25$
At $x=3$, and $y=4, \frac{d x}{d t}=5, \frac{d y}{d t}=-2$,
find $\left\{\frac{d z}{d t}\right\}$
Take derivative of both sides of $x^{2}+y^{2}=z^{2}$ with respect to t.

$$
\begin{aligned}
& \frac{d}{d t}\left[x^{2}\right]+\frac{d}{d t}\left[y^{2}\right]=\frac{d}{d t}\left[z^{2}\right] \\
& 2 x \frac{d x}{d t}+2 y \frac{d y}{d t}=2 z \frac{d z}{d t} \\
& x \frac{d x}{d t}+y \frac{d y}{d t}=z \frac{d z}{d t} \\
& 3 \cdot 5+4 \cdot(-2)= \pm 5 \frac{d z}{d t} \\
& 15-8= \pm 5 \frac{d z}{d t} \\
& 7= \pm 5 \frac{d z}{d t}= \pm \frac{7}{5}
\end{aligned}
$$

Suppose $A=A(t), r=r(t)$ and $A=\pi r^{2}$
Sind $\frac{d A}{d t}$ when $r=5$ and $\frac{d r}{d t}=4$
Exact Answer
Area of
Circle

$$
\begin{aligned}
\frac{d}{d t}[A] & =\frac{d}{d t}\left[\pi r^{2}\right] \\
\frac{d A}{d t} & =\pi \cdot \frac{d}{d t}\left[r^{2}\right] \\
\frac{d A}{d t} & =\pi \cdot 2 r \cdot \frac{d r}{d t}=2 \pi r \frac{d r}{d t} \\
\frac{d A}{d t} & =2 \pi(5)(4)=40 \pi
\end{aligned}
$$

Given $\quad v=\frac{4 \pi r^{3}}{3}, r=r(t), v=v(t)$ Volume of sphere find $\frac{d r}{d t}$ when $r=5$, and $\frac{d r}{d t}=-\frac{1}{\pi}$ Exact Ans. only.

$$
\begin{aligned}
\frac{d}{d t}[V] & =\frac{d}{d t}\left[\frac{4 \pi r^{3}}{3}\right] \\
\frac{d V}{d t} & =\frac{4 \pi}{3} \cdot \frac{d}{d t}\left[r^{3}\right]=\frac{4 \pi}{3} \cdot 73 r^{2} \cdot \frac{d r}{d t} \\
\frac{d V}{d t} & =4 \pi(5)^{2} \cdot\left(\frac{-1}{\pi}\right) \\
& =-100
\end{aligned}
$$

Given $\quad V=\pi r^{2} h, V=V(t), r=r(t)$, and

$$
h=h(t)
$$

find $\frac{d v}{d t}$ when $r=4, h=8, \frac{d r}{d t}=\frac{5}{\pi}, \frac{d h}{d t}=-\frac{1}{\pi}$

$$
\begin{aligned}
\frac{d V}{d t} & =\frac{d}{d t}\left[\pi r^{2} h\right] \\
& =\pi \frac{d}{d t}\left[r^{2} h\right]=\pi\left[2 r \frac{d r}{d t} \cdot h+r^{2} \cdot \frac{d h}{d t}\right] \\
\frac{d V}{d t} & =\pi\left[2 \cdot 4 \cdot \frac{5}{\pi} \cdot 8+4^{2} \cdot \frac{-1}{\pi}\right] \\
& =2 \cdot 4 \cdot 5 \cdot 8+4^{2} \cdot(-1) \\
& =320-16=304
\end{aligned}
$$

Oct 18-11:22 AM

